
ACTA FACULTATIS XYLOLOGIAE ZVOLEN, 52(2): 23−31, 2010 
Zvolen, Technická univerzita vo Zvolene, ISSN 1336−3824 

23 
 

COMPUTATION AND 3D VISUALIZATION OF THE TRANSIENT 
TEMPERATURE DISTRIBUTION IN LOGS DURING STEAMING 

Nencho Deliiski − Ladislav Dzurenda − Radoslav Miltchev 

ABSTRACT 

A two-dimensional mathematical model has been created, solved, and verified for the 
transient non-linear heat conduction in frozen and non-frozen logs at arbitrary, encountered in 
the practice as initial and boundary conditions during the steaming process of wood. The model 
takes into account the fiber saturation point of each wood species and the specific heat capacity 
of the wood itself and the ice contained in it, which has been formed by the freezing of the free, 
as well as of the hygroscopically bound water. It has been solved by the usage of an explicit 
form of the finite-difference method, where the distribution of the temperature field in all points 
of the volume of the log is calculated for the first time only with one system of equations. 

The paper presents solutions of the model and the 3D visualization of the obtained 
calculated results. The influence of initial wood temperature on the temperature distribution 
through the longitudinal section of beech logs during their steaming at 80 °C is studied. 

The postprocessor application, that has been used for color plots visualization of 2D 
transient temperature distribution, incorporates. NET and advanced graphics visualization 
technologies. It has capabilities to show and store results in different forms, including color 
maps, contour maps and vectors. 
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INTRODUCTION 

For the optimization of the control of log heating process in veneer and plywood mills, it is 
required that the distribution of the temperature field in logs at every moment of the process is 
known. 

Considerable contribution to the calculation of non-stationary distribution of temperature in 
frozen and non-frozen logs and to the duration of the heating process has been made by 
H. P. Steinhagen. For this purpose, he, alone, (STEINHAGEN 1986, 1991) or with co-authors 
(STEINHAGEN et al. 1987, STEINHAGEN and LEE 1988) has created and solved a 1-dimensional, 
and later a 2-dimensional (KHATTABI and STEINHAGEN 1992, 1993, 1995) mathematical model, 
whose application is limited by  u  0,3 kgkg−1. 

These models contain two systems of equations, one of which is used for the calculation of 
the change in temperature along the axis of the log, and the other – for the calculation of the 
temperature distribution in the remaining points of its volume. 

This paper presents the creation, verification and solutions of a 2-dimensional mathematical 
model of a transient non-linear heat conduction in frozen and non-frozen logs, where the 
complications and incompleteness in existing analogous models have been overcome. The paper 
presents and visualizes also the results from 3D simulative investigation of the impact of the 
initial wood temperature, while there is no ice present in the wood, on the temperature 
distribution across the longitudinal section of beech logs during the steaming process. 
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MATHEMATICAL MODEL FOR THE HEATING OF LOGS 

The process of heat transfer in logs can be described by a non-linear differential equation of 
thermo-conductivity, which in polar coordinates takes the following form (DELIISKI 1979, 
2009): 
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with an initial condition 

       w0w 0,, TzrT  ,                                  (2) 

and  boundary conditions                      

           mww ,0,,,0 TrTzT  .                                     (3) 

For the solution of the system of equations (1) to (3), a mathematical description of the 
physical quantities in its thermo-physical characteristics of the wood, cwe, wr, wz, and of its 
density, w, is needed. 

Equations in (DELIISKI 1990, 2003, 2004) present a mathematical description of the 
effective specific heat capacity coefficient, cwe, of wood as a sum of the capacities of wood 
itself, cw, ice created in it by freezing of free water, cfw, and hygroscopically bound water, cbw. 

Equations in (DELIISKI 1994, 2003) present a mathematical description of the density of 
wood, w, and of its thermal conductivity w in each anatomical direction.  

COMPUTATION OF THE TEMPERATURE DISTRIBUTION IN LOGS 
DURING THEIR HEATING 

The following system of equations has been derived by passing to final increases in equation (1) 
by the usage of an, formerly described by (DELIISKI 1977, 2003), explicit form of the finite-
difference method and taking into account the mathematical description of the thermal 
conductivity w in different anatomical directions: 
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with an initial condition                                                               

    w0
0
, TT ki  ,                                                                                             (5) 

 
and a boundary condition 

     m0,,0 TTT n
i

n
k   .                                           (6)  
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The size of the interval between time levels  is determined from the condition of 
stability, needed for the solution of the system of equations (4)  (6) (DELIISKI 1977, 2003).  

The presentation of the non-linear particular differential equation (1) from the mathematical 
model through its discrete analogue (4) corresponds to the setting shown in Fig. 1. It is a setting 
of the coordinate system and the positioning of the nodes in the mesh, in which the distribution 
of the temperature in the log is calculated.  

The calculation mesh for the solution of the model through the finite-difference method is 
built on a ¼ part from the longitudinal section of the log, because of its symmetry with the 
remaining ¾ parts of this section. 

The setting of the coordinate system, shown in Fig. 1 allows, with the help of only one 
system of equations (4), to calculate the change of  temperature in any network node of the 
volume of the log at the moment (n + 1). using the already calculated values of T at the 
preceding moment n.. 

 
 

 
 

Fig. 1 Positioning of the mesh nodes in a discretized log. 

We performed wide experimental studies for the determination of a 1- and 2-dimensional 
distribution of temperature in the volume of frozen and non-frozen pine, beech, and poplar logs. 
It has been determined that the coefficient Kwpr has the following values: for pine Kwpr = 2.37, for 
beech Kwpr = 1.78, and for poplar Kwpr = 1.96. 

RESULTS AND DISCUSSION 

With the help of the model, the 2D changes in t are studied for non-frozen beech logs with 
D = 0.40 m, L = 0.80 m, u = 0.6 kgkg−1 and initial wood temperature tw0 = 0°C or tw0 = 20 °C, 
during their 20 h steaming at tm = 80 °C.  

The changes in tm and tw in 4 characteristic points on the longitudinal section with 
coordinates (R/2, L/4), (R, L/4), (R/2, L/2) and (R, L/2 – central point of the section) are shown in 
Fig. 2 and 3. The increase of tm from the value of tm0 = tw0 to tm = 80 °C goes exponentially with 
a time constant, which is equal to 1800 s. This increase of tm at the beginning of the log steaming 
process can be seen in the Fig. 2 and 3. 

Simulations of heat transfer in the radial and longitudinal directions are displayed by a series 
of 3D graphs and 2D contour plots (Fig. 4 and 5).  
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Fig. 2 Change in t of beech logs with D = 0.4 m, L = 0.8 m, u = 0.6 kgkg−1 and tw0 = 0 °C. 
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Fig. 3 Change in t of beech logs with D = 0.4 m, L = 0.8 m, u = 0.6 kgkg−1 and tw0 = 20 °C. 
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Fig. 4 3D graphics and 2D contour plots for the temperature distribution in time in ¼ of longitudinal 

section of steamed beech log with D = 0.4 m, L = 0.8 m, u = 0.6 kgkg−1 and tw0 = 0 °C. 
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Fig. 5  3D graphics and 2D contour plots for the temperature distribution in time in ¼ of longitu-

dinal section of steamed beech log with D = 0,4 m, L = 0,8 m, u = 0,6 kgkg−1 and tw0 = 20 °C. 
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Transient temperature distribution changes are clearly observable in the 3D graphical 
presentations (left columns of fig. 4 and 5). 2D contour plots for the results from the simulation 
are more for qualitative than quantitative observations of the heating process of logs (right 
columns of Fig. 4 and 5). 

At the beginning of the heating process during steaming (Time = 0 h), the temperature is 
uniformly distributed with the specified initial temperature of the logs (0°C or 20 °C). Within a 
very short time, the temperature on the surface and at the edge of the logs increases sharply to 
equilibrate with the external temperature of the steaming medium tm due to the very high heat 
exchange between this medium and wood (TREBULA & KLEMENT 2002).  

In the graphs, it is clearly shown that the heat flow transported from the outside to the inside 
with the whole temperature profiles had increased in time until reaching equilibrium with the 
temperature of the steaming medium (Time = 20 h). 

The temperature increased quickly at the beginning of the heating process with a steep 
temperature gradient in both directions (Time = 5 h), and then slowed down due to the small 
temperature difference within the log. It can be seen that the temperature increased faster in the 
longitudinal direction than in the radial direction due to the higher thermal conductivity value for 
the longitudinal direction. The difference is significant enough since the ratio of the longitudinal 
over radial thermal conductivity values used in the simulation for the beech wood is 1.78 : 1.00 
(DELIISKI 2003). This faster longitudinal heat transfer is clearly seen during the early heating 
period (Time = 5 h). At the end of the simulations the temperature within the log became almost 
uniformly distributed as shown in the Figure 2, 3, 4 and 5 (Time = 20 h).  

Preparation of postprocessor results in the form of static 2D graphical images (right columns 
on Fig. 4 and 5) is made by using self-developed software tools described in detail in 
(MILTCHEV 1999, MILTCHEV etc. 2000, YATCHEV etc. 2001). They are a part of research aimed 
to facilitate CAD of electric apparatus and other technical devices that involve in their design a 
different field analysis of matters and develop general framework application for these purposes. 
Main features of these tools include postprocessor visualizations of different kinds of results 
from numerical computations based on the use of the Finite Element Method, Finite Difference 
Method and Boundary Integral Equation Method in 2- and 3-dimensional steady-state or 
transient field cases. Several approaches for high-quality postprocessor visualizations are 
integrated with different transparency levels and vector plots. Final results also include a model 
geometry drawing and meshes correspondent to chosen numerical computation method can be 
represented in the form of static images or animations for better analysis of studied objects. 

CONCLUSIONS 

All 3D graphs in this paper were plotted in AutoCAD, which has a good visualization effect 
for the model output. The 2D contour color plots can be displayed not only individually at each 
time step of the steaming process for detailed examination, but they can also be displayed 
together as an animation for the overall trend observation, which will be very helpful for the 
industry operators to easily foresee the overall changes of the process.  

The 3D graphs and 2D contour plots for temperature profiles are powerful graphical tools 
that provide a better understanding of the relative change and changing patterns. However, it is 
difficult to analyze the details of the change and compare the heat transfer in the two directions. 
The computational results gained by solving of the mathematical model of the transient non-
linear heat conduction in logs can be used for such analyses.  

Symbols: 
c - specific heat capacity [Wkg−1K−1], 
D - diameter [m], 
L - length [m], 
r  - radial coordinate: 0   r   R [m], 
R - radius [m], 
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T - temperature [K], 
t - temperature [°C], 
u - moisture content [kgkg−1 = %/100], 
z - longitudinal coordinate: 0   z   L/2 [m], 
 - thermal conductivity [Wm−1K−1], 
 - density [kgm−3], 
 - time [s], 
Δr  - distance between mesh points in space coordinates [m], 
Δ - interval between time levels [s]. 

Subscripts: 
bw - bound water 
c - center (of logs) 
fw - free water 
i - nodal point in radial direction: 1, 2, 3, …, (R/Δr)+1 
k - nodal point in longitudinal direction: 1, 2, 3, …, (L/2Δr)+1  
m - medium 
0 - initial (at 0 °C for ) 
p - parallel to the fibers 
pr - parallel to the radial 
r - radial direction (radial to the fibers) 
w - wood 
we - wood effective (for specific heat capacity) 
z - longitudinal direction 

Superscript: 
n - time level 0, 1, 2, … 
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