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ABSTRACT 

Existing models of kinetics of deformation-destruction are related mainly to the description 

of the transition from the undamaged state of the material into a destroyed stage. The purpose 

of this study was to create the basic model of deformation-destruction kinetics describing 

this process in the form of several successive transitions of separate structural elements (SE), 

in a material that deforms from one rheological state to another one in time. A formal kinetics 

apparatus is involved to describe this process, which allows, knowing the speed of the 

transition of the SE from one rheological state to another one, to predict the time to reach 

the critical concentration of destroyed SE. It is established that the process of deformation-

destruction can be considered a process of gradual transition of the SE, first an elastic state 

into viscoelastic and then destroyed. The change in the concentration of one or another SE 

can be determined experimentally by measuring the quantities that correlate with the 

parameters of deformation-destruction. For the first time, a two-stage nonlinear kinetic 

model of resource loss with the creep of composite materials based on wood was proposed. 

The application of the method of basic deformation diagrams in conjunction with the two-

stage description of the process of accumulation of damage can increase the accuracy of the 

prediction of allowable time for different load patterns during creep. 

Key words: particleboard, model of kinetics, kinetics of deformation, criteria of destruction, 

two-stage model of deformation-destruction. 

 INTRODUCTION  

One of the first theories of strength was formulated by GRIFFITH (1921). According to 

this energy theory, strength was defined as the stress under which the condition of equality 

of two energies is fulfilled: the energy expended on the formation of a new surface of a 

growing crack, and the elastic energy released during a growth of crack. According to this 

theory, destruction is interpreted as a critical event, which follows a critical tension. 

This interpretation is not confirmed by experience, because it is known that the 

accumulation of molecular and supramolecular defects occurs long before the moment of 

destruction. Therefore, destruction develops over time and is not a critical event. The 

introduction of a temporary scale of the fracture process led to the creation of a kinetic theory 

of strength. Temporal dependencies were proposed by ALEKSANDROV (1941) who describes 

the relaxation properties of viscoelastic deformation of solids, in the form of generalized 

Maxwell equations. The clearest physical interpretation and development of these ideas was 
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provided by professor S. M. Zhurkov, who is the founder of the kinetic theory of strength 

(REGEL et al. 1974). In this, the theory destruction is considered as a temporary process of 

accumulation of molecular and supramolecular defects. The durability of a stressed bodies 

is defined as a fundamental parameter of strength and reflects the average rate of destruction 

at all structural levels: molecular, supramolecular and macroscopic. 

A fundamental form of kinetic strength theory is the Zhurkov equation. Moreover, the 

Zhurkov equation, which is created to describe the mechanism of destruction at the 

molecular level, is automatically transferred to describe the mechanism of destruction of 

mezzo and macro-levels, and does not take into account how the relaxation processes occur 

at these levels. In addition, this equation assumes that the process passes in only one stage. 

Namely, the connections between the elements are considered to be either not destroyed, and 

are under the action of thermo-force load or destroyed after a time determined by the 

Zhurkov formula. 

The initial state of a structure element is a state in which there is no external 

mechanical effect. In this case, all the individual elements of the structure of the target are 

in thermodynamic equilibrium. Elastic steady state (E) of a structure element is a state, where 

structure element is in an elastic state for some time. The viscoelastic steady state (VE) of a 

structure element is a state, where structure element is in a viscoelastic state, that is, a state 

of relaxation of internal stresses. Destructed steady state (D) of a structural element is a state, 

where destroyed structural element is formed from a viscoelastic, whose stresses at the time 

of destruction are redistributed between those elements of the structure that are presently in 

elastic and viscoelastic states. 

We shall consider a solid body not in the form of a continuous continuum, but in the 

form of a solid structure, consisting of separate supporting elements of the structure, 

interconnected in a certain way. Then the action of external loading on the surface of the 

body will cause its internal elements of the structure, due to internal heterogeneity, to 

experience different in magnitude and direction of internal stresses (KULMAN and BOIKO 

2015). Elements of structure whose stresses are greater than the tensile strength will be 

immediately destroyed. After their destruction, external efforts will be redistributed between 

the remaining undamaged elements of the structure so that each of them will bear a new load 

on the part of neighbouring SE. 

The behaviour of polymers over time is usually described in the form of combinations 

of primary rheological bodies, such as the elastic body of Hook, the viscous body of Newton, 

or combinations thereof (Maxwell or Voigt bodies). By combining these primary rheological 

bodies, one can in one way or another create a rheological model, whose behaviour in time 

(kinetics) will accurately describe the behaviour of the real body under the influence of 

external loads. It is generally recognized that during a period of constant creep, a solid body, 

under the action of external temperature-force loading, behaves as consistent in an elastic, 

viscoelastic or plastic state. At the same time, it is assumed that the total deformation of the 

body consists of three different parts by nature: instantaneously reversible (elastic), highly 

elastic, reversible in time, i.e., relaxing in time (viscoelastic) and irreversible (plastic) 

(REGEL 1964). In this case, total deformation is understood as the total deformation of the 

whole body, and not its individual parts or elements of structure (AKYÜZ et al. 2019, YAPICI 

et al. 2016). 

We take as the main hypothesis of the deformation that: first, the body is deformed 

and destroyed individually in separate elements of the structure. Namely, only in those 

elements in which the local stress first reaches the limits of proportionality, and then the 

limits of strength. In this case, the individual element of the structure is first elastically 

deformed, and then passes in series in a viscoelastic or plastic state, and then collapses. 

Secondly, a single destroyed element of the structure is surrounded for some time by non-
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destructive elements of the structure that are in an elastic or viscoelastic state. In-third, the 

body will be considered destroyed if the number of destroyed elements of the structure 

exceeds certain predefined values (POŠTA et al. 2016). 

Thus, the kinetics of the destruction of the body under the action of thermomechanical 

loading will consist of different variants of the sequence of transition of the elastic elements 

of the structure (E) into the viscoelastic elements of the structure (VE), and then in the 

destroyed elements of the structure (D): E→VE→D. Within the process of destruction, the 

number and, consequently, the concentration of elements of the structure that are in different 

rheological states are constantly changing. The changes concentration of a particular element 

of the structure can be determined experimentally by measuring values that correlate with 

the fracture parameters of a particular type of body deformation. 

In this case, the total number of structural elements in different states, according to the 

law of conservation of masses at each moment must remain constant. Consideration of the 

fracture process, from the point of view of combining cracks, for example, smaller ones into 

larger ones, does not change the number of structural elements, but only examines them in 

different states. 

The purpose of this study is to create basic model of kinetics of the process of scattered 

fracture based on a multistage transition of structural elements from one rheological state to 

another by successive or more complex transformations. To create a kinetic model of the 

relaxation behaviour of a polymer under the action of thermomechanical action, several 

different states of its individual structure element (SE) was taken into consideration. 

Individual elements of a structure are understood to mean local body volumes, whose local 

stresses are different. For a crystalline polymer under load, these can be regions both 

crystalline and amorphous. 

MATERIAL AND METHODS 

Materials 

Three commercially produced structural particleboards bonded with urea formaldehyde 

resin (UF) provided by Kronospan UA Ltd. were used for this study: melamine faced 

particleboard (MF PB) according to EN 14322; veneered faced particleboard by oak (VF 

PB) according to EN 316, EN 622-5 and particleboard P2 (P2 PB) according to EN 312 - 

type P2; EN 13501-1: class D-s1, d0. For each type, two regular-size (2750 mm × 1830 mm) 

of boards with thicknesses of 18 mm were cut into 450 mm × 50 mm pieces. Panels before 

cutting and all specimens were conditioned at 20 °C and 65% RH, to the moisture content 

of about 5%.  

Static 3-point bending tests were carried out in the special test machine with 

temperature-controlled chamber (BOIKO et al. 2013). Specimens were prepared and cut 

according to ASTM D 1037-12. Loading force and deflection were measured, and MOR and 

MOE were calculated according to Section 9 in ASTM D 1037-12. Investigated temperatures 

were 20 °C and 60 °C.  

Specimens were preheated in the chamber until they reached equilibrium with the 

target temperature. The preheating times were determined from preliminary experiments by 

an embedded thermocouple, and the prediction model was developed in a previous study 

(KULMAN and BOIKO 2016). The mechanical properties of reference samples were tested in 

the chamber at the target temperature, results are shown in Table 1. One hundred fifty 

specimens were cut from each type of board. Ten test pieces were prepared for determination 

the modulus of elasticity (MOE) and modulus of rupture (MOR) before main testing.  
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Tab. 1 Standard properties of particleboard.  

Board type  Density    Thickness  MOR    MOE  

(kg/m3)    (mm)    (MPa)    (MPa)  

MF PBa  757 ± 7    18.1 ± 0.1   17.1 ± 1.1   2 110 ± 29  

VF PBb  792 ± 8    18.5 ± 0.1   20.5 ± 1.9   2 520 ± 15  

P2 PBc   733 ± 6    18.1 ± 0.1   16.2 ± 0.6   2 020 ± 22  
aMF PB – Melamine Faced Particleboard.  
bVF PB – Veneered Faced Particleboard.  
cP2 PB – Particleboard according to EN 312, type P2.  

 

Tests according to the scheme of three-point bending according to ASTM D 1037-12 

loads equal to 75% of the maximum allowable. The nature of the behaviour of the system 

under the action of constant load was described by the movement of the midpoint in time 

until rupture. 

Model hypothesis and rationale 

The option of sequential destruction in two elementary stages, which occur simultaneously 

in the body for its deformation-destruction (DD) is considered. The scheme of 

transformation of structural elements in the process is given in the following form: 

E→VE→D. The rate of destruction is defined as the change in the number of destroyed 

structural elements N per unit time, attributed to the unit volume of the body. 

We first assume that destruction can occur in any body volume (homogeneous 

destruction). Unlike heterogeneous destruction, when it can occur at the boundaries of phase 

distribution. The rate of destruction is written:  

r = ± dN/Vdt (for homogeneous destruction),  

r = ± dN/Sdt (for heterogeneous destruction).  

Derivative sign means, spent or accumulated (formed) or a certain amount of SE in 

different states in the process of destruction. If, during homogeneous destruction, the volume 

of the system remains constant (closed system), then: dN/V = dC. Hence, the rate of 

destruction is related to the concentration of elements of the structure in time: r = ± dC/dt. 

We apply the stoichiometric law of equivalents to the kinetics of DD, which states that 

the ratio the number of SE, that change their state, is equal to or a multiple of the molar 

quantities equivalents. In our case, the equivalent is some part of the volume of the body, 

which, when destroyed, becomes one of the destroyed structural elements. That is, this 

element is formed only as a result of DD. 

We also apply the law of multiple relations to the quantitative description of the DD 

process. According to the law of multiple relations, in the event of destruction, the mass of 

one type of SE is the mass of another type of SE, which are referred to as small integers. The 

law of multiple relations is confirmed by the discreteness of the process of destruction, as 

well as by the fact that all destroyed elements of one homogeneous substance have the same 

concentration and a strictly defined specific mass (volume). 

In our description of the DD process, we will rely on two concepts: first, the law of 

mass action as the law of a simple process (its elementary stage); secondly, the complexity 

of the mechanism of the DD process, consisting of one or another set of successive or parallel 

elementary stages. 

The law of the active masses has been applied far beyond chemical kinetics in so-

called "models of development" and has been widely used in biology and ecology, 

economics, neurophysiology and genetics. The fundamental concept of chemical kinetics is 

the mechanism of reaction. In a broad sense, it is the interpretation of experienced data about 

the complex process. Such a mechanism should identify the individual stages and stages of 

the process, describe the characteristics of the intermediate products, certain energy levels 
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of the process, etc. A narrow understanding of the mechanism as a set of stages can also be 

applied. If the stages are assumed to be simple, then they consist of elementary reactions as 

a kinetic law, which is accepted as the law of mass action or the law of acting surfaces - for 

catalytic reactions. This is the concept of mechanism that operates in formal kinetics, which 

studies kinetic models – systems of differential and algebraic equations corresponding to the 

mechanism of the process.  

The two concepts outlined above define the development of two lines that should 

complement each other. Namely, it is a study of the kinetic regularities of the elementary act 

of fracture and the design of the theory of kinetics of complex joint deformations. 

Mathematical model of deformation-destruction process 

Let us write down the process of the DD of a body in the form of a change in the number of 

structural elements that are in different states during the whole time before destruction. The 

exponential dependence of the change in the concentration of submicrocracks, microcracks 

and macrocracks on creep gives reason to consider the process of delocalized destruction as 

a kinetic analogue of the first order process (REGEL et al. 1974, PETROV et al. 1993, YAPICI 

et al. 2016). 

The main variables that characterize the state of the system, determine the substances 

Ai, that is in different rheological states. Denote the number SE in different states as Ni; n – 

is the vector of quantities components. Denote the concentration: Ci ≡ Ni/V. 

Each stage of the system is matched by its speed Ws(C,T). The velocity of the stage is 

intense and is defined as a function of intense quantities – concentration and temperature. 

The kinetics equations have the following in coordinate form: 

 , ,          1, ,i
si s

s

dN
V W C T i n

dt
                  (1) 

where γsi is the stoichiometric vector with components si si si    ; s – stage; ,si si   – 

non-negative integers are stoichiometric coefficients. In the absence of autocatalysis, as in 

our case, this vector completely determines the stoichiometric equations of the stage. 

For each material, there are a priori restrictions on vectors γsi – linear conservation laws 

(balance ratios). If Nsi – the number of structural elements that are in a certain rheological state 

and k is a species in the molar volume of a substance Ai, then for any s and k: 

 ∑ 𝛼𝑠𝑖𝑁𝑘𝑖 = ∑ 𝛽𝑠𝑖𝑁𝑘𝑖  𝑜𝑟 ∑ 𝛾𝑠𝑖𝑖 𝑁𝑘𝑖 =𝑖𝑖 0               (2) 

The balance relations (2) give rise to linear conservation laws for system (1), that is, 

for any k: 
ki ii
N const  , means: 

,
0ki i si ki si s i

d
N V W

dt
                      (3) 

Record the speed of each stage of the deformation-destruction process using the law 

of mass action. At the same time, the general scheme of phenomenological kinetics was 

used, which consists in recording the equations of the dynamics of state change, based on 

the general concepts and dependence of the processes of formation and consumption of an 

individual SE system: 

     , , C,Ts s sW C T W C T W                    (4) 

   , si

s s i

i

W C T k T C
                      (5) 



44 

   , si

s s i

i

W C T k T C
                      (6) 

 ,  sW C T – function of appearance a structural element in a state Ci (E, VE or D);  

 ,sW C T  – the function of disappearance a structural element in a state Ci (E, VE or D);  

 /

sk T   – rate constants of the transition of the SE from one rheological state to another in 

the s-stage. 

From the law of conservation of masses follows, that changes in the concentrations of 

quantities, characterizing the properties of the material, or their changes during DD, satisfy 

the ordinary differential equations system (ODE) of the nth order of the form: 

 , ,          1, ,i
si s

s

dC
W C T i n

dt
                    (7) 

System (7) is defined in some bounded region of the phase space S: (0 ≤ Ci ≤ bi, 

i = 1,…, n) – simplex process area. The boundaries are determined from the balance of the 

number of elements of the structure that are in different rheological states. 

To create a DD model, first of all, we will compile a list of objects that are involved in 

this process. Objects by analogy with the study of DD processes can be taken as a state of a 

separate structural element of the material, which largely determines its behaviour over time: 

elastic, viscoelastic, destroyed. Thus, the state of the material at certain points in time will 

be determined by the number of structural elements that are in a particular rheological state.  

Denote the objects that enter the material at a certain point in time after its loading, 

A1,…, Аn. Let us assume for the kinetic model the mechanism of the DD process in the form 

of a list of its elementary stages. Each stage is determined by its stoichiometric equation: 

1 1 1 1s sn n s sn nA A A A                       (8) 

where s – stage; αsi, βsi – non-negative integers are stoichiometric coefficients.  

The mechanism of DD is interpreted as follows. Each stage corresponds to one 

elementary transition, each elementary transition goes to one clock cycle, in which only 

those SE are involved and in the quantities specified in the stoichiometric equation. The 

elementary act time is much less time between them. 

We will consider loading material as a structure consisting of a set of separate 

structural elements that are under constant external loading. Then the state of its individual 

structural element at different points in time can be described as follows:  

A1 ≡ A – the elastic state of the structural element (E);  

A2 ≡ B – viscoelastic state (VE);  

A3 ≡ C – destroyed state (D). 

Then the following kinetic model of the DD process will correspond to the 

transformation scheme (3): 

 
 1

dCA t
k CA t

dt
                      (9) 

 
   1 2

dCB t
k CA t k CB t

dt
                  (10) 

 
 2

dCC t
k CB t

dt
                  (11) 

with initial conditions, t = 0: CA(0) = 1; CB(0) = CC(0) = 0, and boundary conditions: CA(t) 

+ CB(t) + CC(t) = 1, where CA(t) ∈ (1…0) – the current concentration of structural elements 

that are in an undamaged, elastic state at time t; CB(t) ∈ (0…1) – the current concentration 
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of structural elements that are in a non-destructive, i.e. viscoelastic state at time t; CC(t) ∈ 
(0…1) – the current concentration of the structural elements that are in a destroyed state at 

time t; k1 – the rate constant of the transition of structure elements from elastic state to 

viscoelastic, s-1; k2 – the rate constant of the transition of the elements of the structure from 

the viscoelastic state to the destroyed, s-1; 

Considering the curve of long load, it can be determined that its initial section contains 

elements of the structure only in the elastic state, which after removal of the load return to 

the non-deformed state. During this period of elastic deformation, there is no transition of 

structural elements to a viscoelastic state. Therefore, the beginning of the kinetics of the DD 

is taken to be the end time of the elastic deformation and the beginning of the site of 

viscoelastic deformation, i.e. the time of the beginning of the process first unsteady and then 

steady creep. Throughout the process of creep, there is a decrease in the number of non-

destructive structural elements, i.e., those in elastic or viscoelastic states and an increase in 

structural elements in the destroyed state. 

To describe the kinetics of deformation, it is possible to compare the change in the 

concentration of SE in the elastic state and the destroyed state with the change in the 

magnitude of the deformation over time. In this case, the rate of change of the concentration 

over time of elastic SE will be proportional to the change in the rate of deformation due to 

the transition of elastic SE in viscoelastic, and the decrease in the concentration of elastic SE 

will be proportional to the increase in the absolute deformation of the DD process, i.e.: 

CA(t) ∝ ε(t). 

Since the change in the SE concentrations in one state or another can be given as a first 

order kinetic dependence (REGEL et al. 1974, PETROV et al. 1993), we can write: 

 
 1

dCA t
k CA t

dt
    or, having gone to proportional deformation:  

 
 1

e

e

d t
k t

dt


                    (12) 

We integrate (12) after separation of variables (time, deformation): 

 

 
1 , 

e

e

d t
k t

t




  

 

 

2 2

1 1

1 ,  

t

e

e t

d t
k dt

t








    1

2 1

2

ln 1 ,k t t




 
   

 
 

 
1

2 1 2

1
1 ln .k

t t





 
   

  
       (13) 

As we can see, when the deformation changes ε1 and ε2 by the same number of times 

the value of k1 does not change. This allows for the creation of a kinetic model of 

deformation-destruction to replace concentrations proportional to their values – 

deformations, stresses, acoustic or electromagnetic emission pulses, quantities of matter, etc. 

The magnitude inverse of the first order reaction rate constant, τe = 1/k1, has a 

dimension of time and characterizes with creep the average life expectancy of SE, which are 

in an elastic state before their transition to a viscoelastic state. Similarly, the inverse of the 

rate constant of the transition of the viscoelastic state of the SE to the destroyed determines 

the average life expectancy of the structural elements that are in the viscoelastic state: 

τve = 1/k2. 

Since time is included in Eq. (13) as a difference rather than a relation as a deformation, 

we introduce a dimensionless time to eliminate the dimension factor: τi = ti / tcr. At the same 

time, total creep deformation can be represented as the sum of total elastic and viscoelastic 

deformations, i.e. deformations due to the destruction of elastic and viscoelastic SE: 

e ve cr                   (14)  

e ve crt t t                 (15) 
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Because according to Eqs. (12), (14): 

˙

1

1
e

k
 +

˙

2

1
ve cr

k
  ,  then    1 1

1 2

1 1
1

cr cr

i i

t t

e vet t

cr

t t

k k t


  

 
            (16) 

The expression for k2 is obtained by solving the system of two Eqs. (13), (16):  

  

2

1

2

1
1 2

2

ln

*lncr

k

t t t









 
 
 

 
   

 

                (17) 

The solution of the system of differential equations (9), (10), (11), for example by the 

operating method, allows to obtain values of current concentrations of SE, which are in 

elastic, viscoelastic and destroyed states: 

    10 k tCA t CA e                  (18) 

    2 11 1

1 2 1 2

0 ( )k t k tk k
CB t CA e e

k k k k

  
 

              (19) 

    2 11 2

1 2 1 2

0 1
k t k tk k

CC t CA e e
k k k k

  
   

  
             (20) 

Moreover, given the initial conditions: t = 0; CA(0) = 1; CB(0) = CC(0) = 0, and 

boundary conditions: t ∈ (0…1): CA(t) + CB(t) + CC(t) = 1, in the coordinates of 

dimensionless time we get: 

     
1 1 1

0 0 0

1 CA t dt CB t dt CC t dt                   (21) 

therefore, k1
-1 + k2

-1 = 1. So in real time coordinates k1
-1 + k2

-1= tcr. 

The method involves determining the characteristic parameters of the damage and 

predicting the time of reaching the critical mark of the measure of damage. While as a 

preventive comparison of the degree of damage is a scalar value ψ which is equal to the ratio 

of the current concentration of destroyed elements of the structure to the current 

concentration of non-destructive elements of the structure. The resource is considered to be 

exhaustive value the extent of damage exceeding (KULMAN 2020): 

 
 

   
1f

CC t

CA t CB t
   


                           (22) 

where ψf – a measure of permissible damage; CA(t), CB(t), CC(t) – are determined by 

formulas (18), (19), (20), respectively; 1
1

1 2 2

1
lnk

t t





 
  

  
– rate constant of transition of 

structure elements from elastic state to viscoelastic creep diagram, s-1; t1 – the time of the 

end of the section of elastic deformation and the beginning of the section of viscoelastic 

deformation, with; t2 – the time of measurement of deformation at the site of constant creep; 

ε1 – deformation at time t1; ε2 – deformation at time t2; k2 = α–1k1 – the rate constant of the 

transition of the elements of the structure from the viscoelastic state to the destroyed, s-1; α 
– parameter characterizing the rheological properties (features) of the material, the degree 

of its inelasticity. In this case, the rate constants of the transition of local structure elements 

from one state to another, depending on the load and temperature, are determined by the 
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long-term strength chart, which establishes the dependence of the change in the rate of 

deformation in time.  

The method is implemented as follows: a basic deformation diagram is constructed at 

isothermal creep of a part under constant load at a fixed temperature in the coordinates: ε - 

absolute deformation, μm; t - time, s. In this case, the time to fracture and the maximum 

deformation at the time of fracture are determined. The moment of time of the end of the 

section of elastic deformation is fixed, as well as the magnitude of the deformation at this 

moment t. After the base diagram is constructed, the moment is selected t2 = tcr / (2…3) and 

at this point the deflection value is determined. Further, formulas (13) and (17) determine 

the value k1 and k2, as well as the value α: 

α = k1/k2                   (23) 

By measuring the change in the deformation of a part over time, a control chart of 

deformation is constructed. The moment of time is chosen t2k at the site of constant creep 

and absolute deformation at that moment is recorded ε2k. From Eq. (16), there is a value k1k, 

and the Eq. (23) k2k = k1k/α.  

Using Eqs. (17), (18), (19), it is determined the change in the current concentrations 

of SE, which are in elastic, viscoelastic and fractured states. And on the basis of Eq. (22) the 

estimated time is determined tψ reaching the limit value of the damage parameter ψ. 

RESULTS AND DISCUSSION 

The experimental factor levels and test results of studies of the long-term strength 

particleboard at constant load are shown in Table 2. 

  
Tab. 2 Experimental factors levels and test results for particleboards.  

B
o

ar
d

 t
y

p
e Test conditions Test resultsa 

Stress 

level 

(MPa) 

Tempe- 

rature 

(°C) 

Displacement, mm Time displacement, h 

In 

all 

εcr 

visco 

elastic 

εve  

% 
elastic 

εe 
% 

In all  

tcr 

visco 

elastic 

tve 

% 
elastic 

te 
% 

M
F

 

P
B

 

12.8 
20 2.46 0.79 32.1 1.67 67.9 127.1 98.4 77.4 28.70 22.6 

60 3.95 1.33 33.7 2.62 66.3 84.00 73.3 87.3 10.70 12.7 

V
F

 

P
B

 

15.4 
20 1.50 0.59 39.3 0.91 60.7 477.82 380.9 79.7 96.92 20.3 

60 1.77 0.54 30.5 1.23 69.5 190.71 140.0 73.4 50.74 26.6 

P
2

 

P
B

 12.15 20 4.91 1.63 33.2 3.28 66.8 78.77 69.6 88.4 9.17 11.6 

60 1.57 0.51 32.1 1.07 67.9 35.75 24.2 67.8 11.51 32.2 
a The average test values for each group of 20 samples are presented. 

  

Experimental studies of the long-term strength curve of PB, have found that the 

material behaves in a complex viscoelastic manner during the creep. And the curve of its 

deformation contains the recurring sections, characteristic for the curves of elastic and 

viscoelastic deformation (Fig. 1). 
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Fig. 1 Basic and control creep diagrams. Dependences of the average absolute deformation for one group 

of the samples VF PB  by stress level SL = 15.4 MPa and temperature T = 20 °C for basic diagram, and  

by stress level SL = 17.7 MPa and temperature T = 20 °C for control (predicted) diagram. 

 
The nature of the deformation-destruction curves over time (Fig. 1 and 2) indicates 

that the process is non-stationary. The deformation process at all its stages, both at the 

subcritical (stationary creep process) and at the closed (active fracture process) behaves 

nonlinearly and has a stepped character. In Fig. 2, there is shown that the general curve of 

dependence of deformation in time, consists of separate sections, which have different 

repetitive strain rates.  

 

 

  
t,h  
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Fig. 2 Fragments by different time periods in creep curve for one of the sample VF PB by stress level 

SL = 15.4 MPa and temperature T = 20 °C. 

 

Table 2 shows that the amount of viscoelastic deformation is on average 33% of the 

total amount of deformation. In this case, the time of viscoelastic deformation (behaviour) 

PB occupies about 80% of the total deformation time. And the value of both the magnitude 

of viscoelastic deformation and its time is in a very narrow range, which indicates the 

similarity of the deformation process and the destruction of PB under different conditions of 

its loading.  

Analysing the deformation curves over time, we can say that the general deformation 

curves up to fracture periodically repeats cycles of elastic and viscoelastic behaviour. This 

confirms our assumption that the process is multi-stage (GÜNTEKIN and AYDIN 2016, VAN 

BLOKLAND et al. 2019, SHARAPOV et al. 2019).  

According to the graph of the basic deformation diagram (basic long-term strength curve) 

Fig. 1 we define such quantities: t1 = 0.003 × 3600 = 10.8 [s], ε1 = 80 [μm], t2 = 200 × 3600 = 

7.2 × 105 [s], ε2 = 730 [μm], tcr = 477 × 3600 = 1.717 × 106 [s].  

By Eqs. (13), (17), (23) we define: k1 = 0.307 × 10-5 s-1, k2 = 0.719 × 10-6 s-1; α = 4.273. 

A basic model diagram is shown in Fig. 3, constructed in the coordinates of the 

“concentrations of SE in different states – time”. 
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Fig. 3. Basic model diagram of long-term strength (creep): change concentrations of SE in the states: 

elastic – CA (t), viscoelastic – CB (t), destroyed – CC (t) in time for the basic deformation diagram. 

 

The deformation control chart was investigated for a similar part load exceeding the 

baseline by 15%. According to the control chart of deformation at the site of permanent creep 

at time: t2k = 100 × 3600 = 360000 s, ε2k = 730 [μm]. 

Using Eqs. (13), (23), the values of the rate constants k1k, k2k control deformation chart 

were determined: 

 
51

1

2 1 2

1
ln 0.614*10k

k k

k
t t




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   

  
 s-1; 1 5

2 1* 0.144*10k kk k     s-1  

 

The critical amount of damage will be reached at the moment when, based on the 

condition (22):  

CA(tψ) + CB(tψ) – CC(tψ) = 0               (24) 

Solving together equations (18), (19), (20) and (24), we find the time to the predicted 

destruction: tpredict ψ = 6.6 × 105 s.  

The actual time to destruction of the control sample is tfact ψ = 6.7 × 105 s. 

Fig. 4 shows a control model diagram, constructed in the coordinates of 

“concentrations of SE, which are in different states – time”, which clearly shows the process 

of loss of bearing capacity of the part in time during creep. 

 

 
Fig. 4 Control (predicted) creep model diagram: change concentrations of SE in the states: elastic - CA 

(t), viscoelastic - CB (t), destroyed - CC (t) in time for the deformation control chart. 
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The results of basic tests of six groups of samples, as well as the results of calculations 

of the kinetic basic parameters are presented in Table 3. 
 

Tab. 3 Basic test results and calculated basic kinetic parameters. 

Board type Test conditions Test results 

 Stress level 

(MPa) 

Temperature 

(°C) 

Creep life tcr  

(s)  

k1  

(s-1) 

k2  

(s-1) 
α 

MF PB 
12.8 

20 457560 ± 7250a 1.16E-05 2.69E-06 4.325 
 60 302400 ± 3500 1.74E-05 4.08E-06 4.261 

VF PB 
15.4 

20 1717000 ± 9500 3.07E-06 7.19E-07 4.273 
 60 686556 ± 5600 7.94E-06 1.78E-06 4.453 

P2 PB 
12.1 

20 283572 ± 850 1.88E-05 4.34E-06 4.331 
 60 128700 ± 780 4.53E-05 9.38E-06 4.831 

aThe confidence interval is indicated at p = 0.05 level.  

 

The results of control tests of six groups of samples, as well as the results of 

calculations of the control kinetic parameters are presented in Table 4. 

 
Tab. 4 Control test results, calculated control kinetic parameters and predicted time to failure. 

Board 

type 

Test conditions Test results 

Stress level 

(MPa) 

Temperature 

(°C) 

k1k  

(s-1) 

k2k  

(s-1) 

Creep life tcr (s) 

Control diagram 
Predict by  

Eq. (22) 

MF PB 14.7 
20 1.43E-05 3.30E-06 338933 ± 7500a 372827b 

60 1.82E-05 4.27E-06 262957 ± 5600 289252 

VF PB 17.7 
20 7.99E-06 1.87E-06 670000 ± 9800 660000 

60 1.19E-05 2.67E-06 504821 ± 5500 458928 

P2 PB 13.9 
20 2.50E-05 5.78E-06 234357 ± 6200 213052 

60 5.95E-05 1.23E-05 99000 ± 860 98000 
aThe confidence interval is indicated at p = 0.05 level.  
bPrediction results based on average kinetic coefficients. 

 

A multi-stage description of the kinetics of deformation-fracture allows us to take into 

account the change in the rheological state of the material during its deformation. Comparing 

the results of the model time before the destruction of the control samples in each test group 

(Tab. 4. Creep life predict by Eq. (22)) with the actual time before the destruction of the 

control samples (Tab. 4. Creep life control diagram), we can conclude that it is quite high 

convergence of these quantities. This suggests that the proposed method for predicting long-

term creep strength can be used to improve the accuracy of predicting the performance of 

controlled mechanical systems (MELZEROVÁ et al. 2016). 

CONCLUSIONS 

Based on the analysis of the results of theoretical and experimental studies of the 

process of deformation-destruction of wood composites, we can draw the following 

conclusions: 

1. A two-stage nonlinear kinetic model of resource loss due to the creep of wood-based 

composites is proposed for the first time. 
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2. The use of formal kinetics methods for modelling the physicochemical processes that 

occur during deformation-destruction allows to design the multi-stage kinetic models. 

3. The use of the method of basic deformation diagrams in combination with the two-stage 

description of the process of accumulation of damage, allows to increase the accuracy of 

the prediction of allowable time under different load schemes during creep. 
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